

Faculty of Information Technology Computer Systems Engineering Department

Digital Lab ENCS 211 EXP. No. 4

# Digital Circuit Implementations Using Breadboard

## **4.1 OBJECTIVES**

The objective of this laboratory experiment is to introduce you to simple digital devices and their operations. You will also be introduced to the process of building digital circuits using a digital design kit.

#### **4.2 EQUIPMENT REQUIRED**

- 1. KL-22001 Basic Electricity Circuit Lab
- 2. Breadboard
- IC 7404 (inverter), IC 7408 (2-input AND), IC 7432 (2-input OR), IC 7400(2-input NAND) and IC 7486 (2-input XOR)

#### 4.3 PRE-LAB

- 1. Design and Implement a Full Adder using the gates on the chips.
- 2. Design and Implement a 4x1 multiplexer using the gates on the chips.
- 3. Design and Implement a 2-4 "active-low" decoder using the gates on the chips

#### **4.3 DIGITAL GATES IN IC PACKAGES**

Figure 4.1 shows some digital gates with identification numbers and pin assignment.





#### **4.3 PROCEDURE**

#### 4.3.1 Verification of basic logic gates

In this task you are to verify the operations of some of the IC chips. This can easily be done using the proto-board:

- **1.** Place each chip shown in Figure 4.1 chip under test on one of the breadboards in such a way that its pins are not short-circuited. (Make sure power is off)
- 2. Connect GND and +5V for each chip you want to check

- **3.** Refer to the handout diagrams (or TTL data book) to determine the input and output pins for each gate in the chip.
- 4. Connect the gate inputs to the dip switches and the gate output to any LED.
- **5.** Determine the output for each possible input combination and fill-out the Truth Tables of Figure 4.2.

Verify your 7404 chip.

| Input | output |
|-------|--------|
| N.C   |        |
|       |        |
|       |        |

Verify your 7408 chip.

| Input1 | Input2 | output |
|--------|--------|--------|
| N.C    | N.C    |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |

Verify your 7432 chip.

| Input1 | Input2 | output |
|--------|--------|--------|
| N.C    | N.C    |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |

Verify your 7400 chip.

| Input1 | Input2 | output |
|--------|--------|--------|
| N.C    | N.C    |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |

Verify your 7486 chip.

| Input1 | Input2 | output |
|--------|--------|--------|
| N.C    | N.C    |        |
|        |        |        |
|        |        |        |
|        |        |        |
|        |        |        |

## Figure 4.2

# 4.3.2 Full-Adder and Multiplexer Implementations

Use any needed gates shown in figure 4.1 to implement the full adder, the 4x1 multiplexer, and the decoder that you designed in the pre-lab.